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Flow properties and aerodynamics are computed with a direct simulation Monte Carlo (DSMC)

method for rarefied entry of the Galilco Probe into the atmosphere of Jupiter. Accurate predictions of

vehicle drag coefiTcients are needed in order to assess atmospheric properties from the onboard Atmo-

sphere Structure Experiment where ttighly-sensitive aceelerometers will measure the drag force to within

10-6 ban" during the initial entry phase at tugh altitudes. The corresponding flow rarefaction extends from

the flee molecule limit to the near continuum transition regime (Re<I O00). Simulation results indicate

that C o varies from 2.1 at the free molecule 1imit down to 1.6 at Reoo = 1, 1300. Temperatures, densities,

and internal energies throughout the flow field were also computed at each altitude ranging from 735 km

to 353 km above the 1 ban" level in the Jovian atmosphere. Surface he_ting and temperatures of the probe

were computed directly in the DSMC code by assuming radiative equilibrium. Material response was

re-assessed accurately during entry by accounting for conductivity, heat capacity, and pyrolysis wlu'ch

led to surface material mass efflux several times that of the freestream mass influx. The simulation also

accounted for the quantum nature of the rotational energy mode of the dominant atmospheric species H2

through partial internal excitation in the freestream gas.
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NOMENCLATURE

thermal accommodation coefficient

drag coefficient
diameter

degeneracy of rotational quantum level j

rotational quantum level

Boltzmann constant, 1.3805 x 10 -23 J/K

Knudsen Number

Mach number

net convective heat flux

Reynolds number based on diameter

normalized rotational energy of level j

temperature

time during entry, starting at 735 km
collision number for internal relaxation

VHS exponent of intermolecular potential

material radiative emissivity

rotational degrees of freedom

characteristic mode temperature

viscosity (kg/mZ-s)

mass-density (kg/m 3)

Stefan-Boltzmann const., 5.67x 10 -8 W/(m2K 4)
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Subscripts:

D deep-space value

ref reference value

r pertains to the rotational mode

v pertains to the vibrational mode

w value at wall or surface

w value at wall or surface

(x_ freestream value

INTRODUCTION

Just prior to encountering and orbiting Jupiter, the

Galileo spacecraft will release a probe which will enter the

Jovian atmosphere. During the initial aerobraking phase,

the 45-degree blunted-cone probe will be protected from

heating by a carbon phenolic shield. Once the probe veloc-

ity has been reduced from 47.5 km/s to 0.74 km/s, and entry

heating has diminished, the probe will eject its heat shield

and deploy a parachute. During descent, the probe will

make several in situ measurements of atmospheric proper-

ties and transmit that data to the orbiting spacecraft. How-

ever, an Atmospheric Structure Experiment, i similar to that

employed in the Pioneer Venus mission, will also be on

the Galileo probe to measure deceleration during the ini-

tial high-altitude entry phase. This experiment deduces

atmospheric density, pressure, and temperature from de-

celeration measurements so long as the vehicle drag co-
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efficient is known a priori. The instrument is sufficiently

sensitive to detect any deceleration exceeding 10 -5 m/s 2.

Consequently, meaningful properties can be assessed for

the Jovian upper atmosphere where the probe encounters

highly rarefied flow during entry just prior to peak heat-

ing and ablation of the heat shield. This flow regime is

bounded by the effective free molecule limit at 750 km al-

titude CReoo = 0.1) and the near-continuum limit at 350 km

CReoo = 1,000). Note that since Jupiter has no identifiable

surface, altitude is measured relative to the 1.0 barr pressure

level in the Jovian atmosphere.

Accuracy of the experiment, however, depends upon the

accuracy with which the probe drag coefficient is estimated.

Intrieri z conducted a series of experiments in the ballistic

range facilities at NASA Ames Research Center to mea-

sure the drag of several blunt-body configurations includ-

ing the probes from Pioneer Venus and Galileo. Results for

each were very similar, leading to values near C o = 1.1 for

Reoo > 1,000. However, C o rises significantly (approach-

ing values near 2.0) for decreasing Reoo below 1,000, al-

though Intrieri's experiments were not reliable in the rar-

efied regime. Furthermore, the experimental surface mate-

rials, gas species, and flow conditions (Mach number, den-

sity, etc.) differed significantly from those anticipated for

the probe entry at a given Reynolds number.

Due to the lack of sufficient experimental data, the probe

aerodynamics must be estimated computationally. Unfor-

tunately, the flow regime is ill-suited to simulations which

are based upon the continuum Navier-Stokes equations due
to limitations in the constitutive relations for heat flux and

shear stress. Instead, highly rarefied flows, for which the ra-

tio of molecular mean free path to a body dimension is large

(Knudsen number, Kn>0.10), are best simulated computa-

tionaUy with direct simulation Monte Carlo (DSMC) par-

ticle methods. 3,4 Here, gas dynamics is modeled directly

by the motion and interaction of thousands or millions of

discrete particles. Particles which strike the vehicle may

reflect back into the flow with velocities and internal ener-

gies corresponding to full or partial accommodation to the

surface. The simulation permits accurate assessment of ve-

hicle aerodynamics and heating along with properties of the
flow field.

The objective of the present study was to assess the drag

coefficient for the Galileo probe during entry from 750 km

down to 350 km altitude in the Jovian atmosphere. Due to

uncertainties in the applicable surface thermal accommo-

dation coefficient A, simulations were repeated using dif-

ferent values to quantify its effects upon the vehicle entry.

Surface heating was evaluated to determine the extent of

pyrolysis of the heat shield through the use of the Charring

Material Thermal Response and Ablation (CMA) program.

This code models transient convective heating, radiation,

in-depth conduction, heat capacity, and the flow of pyroly-

sis gases through the porous material. Together, these codes

simulate the entry environment and response of the Galileo

probe to estimate the appropriate vehicle aerodynamics re-

quired for this and other aerobraking missions.

SIMULATION MODELS

The DSMC code employed in the present study was de-

veloped by Baganoff and McDonald 4,5 and enhanced for

better application to rarefied aeropass maneuvers. 6 The flow

field is divided into cubic cartesian cells to facilitate selec-

tion of colliding particles and sampling of macroscopic flow

properties. The body geometry is modeled by a compos-

ite of planar facets in those cells through which the body

surfaces pass. Each surface facet collects statistics regard-

ing momentum and energy flux and may assume a surface

temperature independent of neighboring facets. To simu-

late entry with the DSMC method, one must first specify

properties of both gas-gas and gas-surface interactions.

Gas-Gas Interaction Models

Molecular interaction is simulated by the Variable Hard-

Sphere (VHS) model of Bird 7 in which the collision out-

come corresponds to isotropic scattering, akin to the me-

chanics of hard sphere interactions. The collision rate, how-

ever, corresponds to an inverse power-law intermolecular

potential of exponent a. This parameter must be specified

between the limits of the Maxwell molecule (_ = 4) and

the Hard sphere (_ = oo), and may be estimated from the

known temperature dependence of gas viscosity/.t as fol-

lows,

-- = (1)

Transport properties of the Jovian atmosphere, thought to

be composed by a mixture of 89% H2 and 11% He, were

calculated from kinetic theory by Biolsi. 8 That work em-

ployed sophisticated semiempirical interaction potentials to

solve the detailed collision integrals for viscosity, thermal

conductivity, and binary diffusion for the gas mixture. Bi-

olsi's results for viscosity are plotted in Fig. 1 and com-

pared to curves corresponding to the VI-IS model. The

VHS parameters which yield best agreement in the fig-

ure and were employed in the current work are given by

/_ = 2.24 x 10 -5 kg/m-s, T_ = 1000 K, and o_= 10.5.

Of additional concern in gas-gas interactions is the in-

elastic exchange of molecular energies due to relaxation of

the internal energy modes for rotation and vibration. The

mechanics of these exchange processes are modeled in the

DSMC code by the methods of Borgnakke and Larsen 9 and

Haas, et al.l° These involve partitioning post-collision ther-

mal energies in a manner which corresponds to equilibrium
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distributions. The rates of rotational and vibrational re-

laxation are dictated by collision numbers Z, and Z_, re-

spectively. Solutions of the master equation using state-to-

state transition probabilities estimated from quasi-classical

methods n- 13 have led to rotational relaxation rates in H2

described by Z, = 100. Simple application of the Millikan

and White 14empirical expression for vibrational relaxation

rates suggests that Zo is several orders of magnitude larger

than Z_, leading to exceedingly slow vibrational excitation.

Furthermore, given the high characteristic temperature of

vibration (O_ = 6320 K) l_ for H2, it is unlikely that the

vibrational mode will contribute significantly to the ther-

mophysics of this flow and was therefore neglected in the

present work.

DSMC methods typically model molecular rotation as a

continuous energy mode with two degrees of freedom, (, =

2. However, at freestream conditions, the quantized nature

of the rotational mode for Hz leads to an effective num-

ber of degrees of freedom below two as a result of its high

characteristic temperature (0, = 85.33 K). _5 As plotted in

Fig. 2, dependence of (, upon temperature T is described

by the rotational partition function and may be expressed as

follows,

ZgJ' exp(-,j)
_, =2 J

Z gJexp
.7

(2)

where the normalized energy rj and degeneracy gj per ro-

tational quantum level j are defined as follows, 16

0.

"S = J0" + 1) _-:_T, (3)

9j = 2j + 1. (4)

Rather than encorporate a detailed model of the quan-

tized rotational mode into the code, a simpler adaptation of

the continuous energy model was employed in the present

work. First, it was recognized that collisions promoting

rotational excitation will occur predominantly in the high-

temperature regions of the flow. Since the rotational de-

grees of freedom would become fully excited in these re-

gions, the normal Borgnakke-Larsen model for exchange

mechanics was employed assuming if, = 2. However,

since the freestream temperature was fairly low, incom-

ing particles were initialized such that the mean rotational

energy was given by _,kT/2 where _, < 2 is evaluated

from Eq. (2). This prevents the freestream from being

too energetic in rotation, such as would occur if initialized

with _, = 2.

Gas-Surface Interaction Models

Details regarding the interaction of gas molecules with

surfaces are not well understood in general, and are depen-

dent upon several factors including surface roughness, im-

pact dynamics, molecular potentials, and thermal energies.

However, simple engineering models often suffice to simu-

late interaction phenomena. In the present work, a single

thermal accommodation coefficient A describes the frac-

tion of particles which accommodate fully to the surface

versus those which reflect specularly. Full accommoda-

tion implies diffuse reflection of the particle from the sur-

face with thermal energy corresponding to the surface wall

temperature, To. Rather than assign some temperature to

the surface, the code couples a simple surface heat transfer

model into the flow solution to compute T,_ directly. 17,18

This model assumes that each surface facet is in radiative

equilibrium with space at temperature T= = 150 K, leading

to the energy balance given by

(5)

Here, q is the net convected heat flux to each facet account-

ing for both incident and reflected energy. As will be de-

scribed later, this model can be enhanced to account for ma-

terial heat capacity, thermal conductivity through the heat

shield, and pyrolysis of the surface material.

Definitive values for A and ¢ for the interaction of Jo-

vian atmospheric gases upon carbon phenolic material at

flight conditions are not readily available. As used in the

this study, a surface emissivity ofe = 0.85 was suggestedby

Bueche a9 from ground-based experiments, flight data, and

theoretical predictions, and is at least consistent with esti-

mates cited elsewhere, z°-z3 Appropriate values for A may

be found with even less certainty than ¢ from limited related

experimental data 24 and theoretical z5 results. It therefore

proved necessary to repeat simulations using different val-

ues of A to assess sensitivity of the results to this parameter.

SIMULATION RESULTS

The DSMC code was used to simulated entry of the

Galileo probe at several points along its trajectory from
735 km altitude to 353 kin. Table 1 lists the simulation

conditions for each case with atmospheric data taken from

Orlon. Note that time is measured relative to the 735 km tra-

jectory point. For all cases the velocity was assumed to be

47,450 m/s and the Knudsen number and Reynolds number

were based on the probe diameter (1.265 m). The grid res-

olution employed in the present work is defined in Table 1

by the size of the probe diameter measured in cell-lengths,

and was sufficiently fine to yield less than 1% error in drag

and heating. 26The geomelry of the probe is compared to the

simulation models in Fig. 3. Note that only one quadrant of
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the probe was simulated, taking advantage of two planes of

symmetry of the body.

In general, flows with greater Reoo require greater res-

olution in order to resolve flow gradients and avoid over-

predicting drag and heat transfer. However, the required

size of the flow domain increases with lower Reoo because

molecules which reflected from the probe surface are capa-

ble of diffusing far into the flow when collisions are scarce.

The extent of the upstream diffusion of particles is depicted

in the plot of flow temperature along the stagnation stream-

line in Fig. 4. The upstream domain boundary for each sim-

ulation case was sufficiently far upstream that the transla-

tional temperature was near its freestream value to prevent

overprediction of heat transfer and drag.26Density profiles

along the stagnation streamline are plotted in Fig. 5 and also
exhibit the effects of rarefaction. Note that no clear shock

structure is observed since the shock is fully merged with

the body layer. Density rose considerably near the body

surface due to particle reflection from the relatively cold

surface.

For each case, the simulation employed at least 16 par-

ticles per cell in the freestream and roughly 3 to 7 mil-

lion particles total. The code was optimized for vector-

processing on Cray supercomputers, requiring roughly

0.6/_sec/particle/timestep on the Cray C-90 or a total run

time of 5,000-8,000 CPU seconds depending upon the case.

Memory requirements ranged from 50 to 200 megawords.

Results of each case, identified by R%o, are presented

in Table 2. The cases were run with A = 0.75 and several

were repeated with A = {0.5, 0.9}. Heating of the nose re-

gion was highly sensitive to accommodation coefficient A

while drag was fairly insensitive, particularly for the high-

est and lowest Reoo cases. Simulated drag coefficients for

the Galileo probe are plotted in Fig. 6 and compared to the

experimental ballistic range results of Intrieri for spheres

and the Pioneer Venus probe. Unfortunately, Intrieri's re-

sults for the Galileo probe were all at high angles of attack

and were of questionable quality at low Reoo.

In general, drag dropped with increasing Reoo above 10,

but did not appear to blend well with the high-Redo exper-

imental data. However, the experiments were performed at

lower Mach numbers (roughly Moo = 14.5) in CO2 com-

pared with the high Mach numbers expected for Galileo en-

try in the H2-He Jovian atmosphere. Indeed, for comparing

highly rarefied flows, a suitable parameter for correlating

the data would be the Knudsen number Knoo. Re-plotting

the data in Fig. 7 suggests a smoother transition between

the simulation results and the experimental work.

Nonetheless, it was instructive to simulate a few of In-

trieri's experiments for more direct comparison. Spheres

flying at roughly Moo = 14.5 in pure COz for Reoo =

{ 192, 4564} were simulated with the DSMC code employ-

ing the same surface description as above. The results are

included in the drag plots and appear to follow the exper-

imental trends quite well. Additional simulations will be

performed to reproduce the Pioneer Venus probe experi-

ments and results will be reported in the final paper.

Surface Temperatures and Pyrolysis

The DSMC calculations above employed a radiative-

equilibrium energy balance to compute the surface tem-

perature. This boundary condition neglects any effects of

heat capacitance and heat conduction in the spacecraft heat

shield and, therefore, provides an upper bound for the sur-

face temperature. The calculations also neglected pyrolysis

from the heat shield which can be significant for a high-

energy incident flow at very low densities.

To check the validity and accuracy of these assump-

tions, the CMA code 27,2s was used to calculate the one-

dimensional heat transfer into the carbon phenolic heat

shield at the stagnation point. Temperature-dependent ma-

terial properties, surface re-radiation, and in-depth pyrol-

ysis were included in the calculation, but surface ablation

was neglected. The initial temperature was estimated to be

150 K just prior to entry from deep space. The aerother-
real heat flux was taken from the DSMC results associated

with A = 0.75 appearing in Table 2.

Figure 8 presents the transient surface temperature at

the stagnation point during Galileo entry. As expected, the

CMA-calculated surface temperature is always below the

radiative-equilibrium temperature. The temperature differ-

ence between the two results increases from about 200 K

at the initial time (Reoo = 0.098) to 1130 K at 55 seconds

(Reoo = 926).

Figure 9 compares the stagnation point pyrolysis-gas

mass flux with the free stream mass flux. The pyrolysis gas

flux becomes significant between 43 and 48 seconds as the

material temperature rises from 600 K to 1000 K. At 46.4

seconds (R_103.4) the pyrolysis gas flux is more than 20

times the free stream mass flux.

Perhaps the drag coefficient does not depend strongly on

the surface temperature which can itself be significantly be-

low the radiative equilibrium value during entry. However,

the surface mass flux due to pyrolysis of the material is sig-

nificant once the probe drops below roughly 420 km. This

could lead to a noticeable increase in drag and a decrease in

heating. Thorough simulation requires that this mass flux

be coupled directly into the DSMC code. Such modifica-

tions are underway and the results will be reported in the

final paper.

Concluding Remarks

Drag on the Galileo probe during initial entry into the

Jovian atmosphere was computed with a DSMC method,

and the results were consistent with the experimental re-
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suits. However, drag varies considerably with Reynold's

numbers in the range 10 < R%o < 10, 000 at the high Mm

flight conditions anticipated for the probe. Results corre-

late better with experiment when plotted against Knudsen

number rather than Reynolds number under highly rarefied

conditions. Simple models for gas-gas and gas-surface in-

teraction permit efficient yet meaningful simulation of the

flow, although the effects of significant surface pyrolysis

warrant further investigation. Uncertainties in the thermal

accommodation coefficient A have minimal impact on final

results due to insensitivity of drag to A despite great depen-

dence of heating upon A. Further comparisons to available

experimental data will be made and the pyrolysis models

will be coupled directly into the DSMC code before the fi-

nal paper is presented.
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Table 2: Galileo Probe Entr)' Simulation Results

Re A CD q-nose T-nose

(W/m2) (K)

0.10 0.75 2.060 766 358.0

1.03 0.75 2.048 6,495 602.4

8.69 0.75 2.024 48,728 998.1

34.01 0.75 1.970 168,523 1,365.1

103.41 0.75 1.896 448,881 1,737.4

322.47 0.75 1.777 1,201,262 2,236.4

926.15 0.75 1.629 2,980,082 2,798.3

0.10 0.50 2.061 474 318.8

8.69 0.50 2.046 32,564 909.9

103.41 0.50 1.934 309,602 t,580.3

926.15 0.50 1.628 2,085,700 2,545.3

0.10 0.90 2.043 848 366.8

8.69 0.90 2.008 57,941 1,050.3

103.41 0.90 1.864 528,677 1,826.8

926.15 0.90 1.648 3,559,079 2,931.1

Table 1: Galileo Probe Entr'/Simulation Conditions

t Alt. Re M Kn T p

(._e) 0an) (K) &_/m3)

0.130 735.00 0.10 31.47 415.59 425.0 2.024E-11

19.00 604.00 1.03 34.15 43.01 360.5 1.896E-10

33.50 506.00 8.69 37.20 5.55 303.2 1.422E-09

41.00 453.00 34.01 39.61 1.51 267.0 5.100E-09

46.40 416.00 103.41 41.86 0.53 238.7 1.435E-08

51.25 382.00 322.47 44.58 0.18 210.0 4.097E-08

55.50 353.00 926.15 46.35 0.07 194.0 1.114E-07

D

(ceils)

16

16
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Fig. 1 Temperature variation of viscosity of the ]ovian atmo-

spheric gas mixture computed by Biolsi and fit with the VHS
model.
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Fig. 3 Comparisons of probe geometry to simulation configura-

tions employing differing resolutions.
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Fig. 7 Drag coefficients from DSMC simulation of Galileo en-
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phase.


